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The Problem: How to “Speak” to Your Policy?

This new machine
is vibrating a lot
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Background on MDP (An Example of Machine Maintenance)

o (Given) action a € A, state s € S, reward function: R(s, a)

o (To Be Learned) transition dynamics: P? =P(st41 =/ | st = i, a)

P Pk

Moderate Severe
Wear Wear
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Problem Formulation: Data Flow

Semi-supervised Learning Transition Kernel

P

@ Language Hint h

7y £ (So, Qg, S1 -+, As2, S53) Tn 2 (So, Ag, S1, -+, g2, Sg3) ™~ 2 (So, Qg, 51, -+, @77, S78)
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Problem Formulation: The Inputs

We are given three ingredients:

@ Past Data

o The trajectory in the current environment: T¢
o n historical trajectories from other environments: D = {71,...,7T,}

@ Human Language Hint
e A text hint h describing the current environment behavior

© A Language Model
o An LLM that can understand h

Goal
Learn a decision policy for the current environment with the help of the hint h the dataset D
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Overall Approach: A Two-Stage Pipeline

Our algorithm consists of two main stages:
Stage 1: Generate Priors via LLM

@ Use the LLM and hint h to “judge” how likely trajectories lies in the main component

@ Train a model to produce a prior score s, for each trajectory 7

Stage 2: Robust Kernel Estimation
@ Use a semi-supervised, prior-weighted EM algorithm
@ This algorithm combines the labeled data 7¢ and the unlabeled data D
@ The priors generated in Stage 1 guide the EM algorithm to filter out outliers
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Step 1.1: LLM as a Judge

Gemini
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Iam comparing two trajectories of a Markov Decision ~
Process, which one is more likely given the hint of the
environment?

Background Knowledge: This is a machine maintenance
problem.

States of the MDP: O (machine is in good condition), 1
(minor wear), 2 (moderate wear), 3 (severe wear), 4 (fail)
Actions of the MDP: M (maintenance), N (do nothing)
Hint: "This new machine is vibrating a lot."

Trajectory 1: (O,N.0,N,0,N,O,NJLNANLNIN,2,N,2)
Trajectory 2: (O,N.O,NA,N1N.2,N,3,N,4,M,0,N1)

Answer with only (A,B, or C) by choosing from the
following options.

A.Trajectory 1

B. Trajectory 2

C. Equally Likely / Cannot Determine

Speak to the Policy

Collecting LLM’s judgments

We input the following to the LLM:

o Background Knowledge
o Trajectory 1: T;

o Trajectory 2: T;

e Hint: A

e Prompt

The LLM outputs a preference:

o A. T; is more likely
e B. 7 is more likely
@ C. Cannot Determine
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Step 1.1: LLM as a Judge (cont.)

Gemini TR e

Hint: "This new machine is vibrating a lot."
Trajectory 1: (O,N,0,N,0,N,0,N;,N;L,N,N;J,N,2,N,2)
Trajectory 2: (O,N,0,N,N1,N,2,N,3,N,4,M,0,N 1)

<4 Showthinking v

8 C < O
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Stage 1: Generating Language-based Priors

Stage 1: Generate Priors via LLM
@ Step 1.1 collects a dataset of M pairwise preferences, M = O(nlog, n)
@ Step 1.2 trains a scoring function fy(7) that maps any trajectory T to a scalar score

Bradley-Terry Model
This model finds scores fy(7) such that the probability of 7; being preferred to 7; is a logistic
function of their score difference:

P(ri = 7;) = o(fp(7i) — fo(7)))

where 0(z) = H% is the standard sigmoid function.
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Step 1.2: Optimizing the Trajectory Score Model

We minimize the negative log-likelihood (given by B-T Model) of the M observed preferences:

- 1 | exp(fo(7i))

0
0 M () 8 exp(fy(Ti)) + exp(fo(7}))
i~Tj

Result: Prior Scores

After training, we can compute a score for every unlabeled trajectory:
fG(Tk)’ Vke{la"'an}

This sy is our prior belief that 74 belongs to the main component.
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Stage 2: Model Assumptions

We use a semi-supervised Expectation-Maximization (EM) algorithm.

Mixture Model

We assume each trajectory 7 is drawn from a two-component mixture, determined by a
latent variable ¢, € {main, outlier}.
o If ¢, = main: T is generated from P (our goal).

o If ¢x = outlier: 7 is generated from a fixed uniform noise component.

Semi-Supervised

@ For labeled data 1¢, we fix cg = main.

@ For unlabeled data 7, ¢k is a latent variable.
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Model Assumptions (Visual)

Qiyuan Chen (UMich IOE)

Components:
@ Main component (black)
@ Observed samples (red)

e Background noise (gray)

Correspondence:
@ 79: Red
o D: Black+ Gray
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Stage 2: EM Algorithm - Initialization

Step 1: Calculate Priors (for T4 € D)

Convert scores to prior probabilities:
Tk 2 P(ck = main) = o(fp(Tx) — k),

where k is a hyperparameter that controls the background noise level.

* A simple choice of k can be k =13~ fy(74).

Step 2: Initialize Main Kernel P

Set initial estimate using only the labeled data 7¢ (a is suppressed):
k
Ni
S k
2 =1 N
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Stage 2: EM Algorithm - The Loop

We repeat the E-Step and M-Step until the kernel P converges.

E-Step (Expectation)

Calculate the posterior probability (responsibility) re that each trajectory 74 belongs to the
main component, given the current kernel P.

M-Step (Maximization)

Update the kernel P by calculating the weighted MLE, using the responsibilities ry as weights.
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Stage 2: EM Algorithm - E-Step

For Labeled Data (79)

The responsibility rp = P(cp = main|Tg, P) is fixed to our certain belief: ry =1

For Unlabeled Data (7 € D)

Find the posterior responsibility using Bayes' rule:

e P Likelihood (Main)

T - P(7k|ck = main, P)

= Blew = mainlri, P) = o i P+ (1 — m2) - B, = nofse, P

S S

(k) 1\ |7l
P(Tk‘ck = main, P) = HH (P,'j)NU , P(Tk’Ck = noise’ P) = <5>

i=1j=1
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Stage 2: EM Algorithm - M-Step

We update P by calculating the weighted MLE

@ “Hard” counts from labeled data 7¢

@ “Soft” (responsibility-weighted) counts from unlabeled data D

Update Rule

For each transition pair i — j:

O+ (S )
Zf:l [N:‘(IO) + <ZkeD Tk Nﬁk))]

Py =

Repeat E-Step and M-Step until P converges.
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Visualizations on a Gaussian Mixture Model

GMM Estimation with Language Priors
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Thank You for Listening!

Speak to the Policy ® !3:";?‘2":::.3 ®

o Stage 1 An LLM judges trajectories based on a 5
human instruction h. A choice model is trained on ’§;0.£ s oo

these judgments to create prior scores.

@ Stage 2 The language prior guides the
semi-supervised learning of the transition kernels.
The model is optimized by an EM algorithm.
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